K-means Min-Min Scheduling Algorithm for Heterogeneous Grids or Clouds

Roshni Pradhan\textsuperscript{a}, Sanjaya Kumar Panda\textsuperscript{b}, Sujaya Kumar Sathua\textsuperscript{a}

\textsuperscript{a}Department of Information Technology, Veer Surendra Sai University of Technology, Burla 768 018, Odisha, India, Contact: pradhan.roshni123@gmail.com, sujaya.sathua@gmail.com.

\textsuperscript{b}Department of Computer Science and Engineering, Indian School of Mines, Dhanbad 826 004, Jharkhand, India, Contact: sanjayauce@gmail.com

Cloud computing is delivering on-demand services to the customers in the form of Infrastructure as a Service (IaaS), platform as a service and software as a service. IaaS serves the customer demands (or tasks) by deploying the Virtual Machines (VMs) in the datacenter. However, efficient mapping of tasks to the VMs/grids/clouds plays a crucial role in obtaining minimum makespan. Therefore, task scheduling is one of the most challenging issues in both grid and cloud computing systems. The mapping of the tasks to the grid or cloud resources is a well-known NP-complete problem for which various heuristic approaches are proposed in the literature. In this paper, we propose a new task scheduling algorithm, called Grid (or Cloud) K-means Min-Min Scheduling (GKMS (or CKMS)) algorithm which uses traditional K-means algorithm followed by the well-known Min-Min algorithm. The performance of the proposed scheduling algorithm is evaluated by means of two performance metrics such as makespan and average grid/cloud utilization. The proposed algorithm is compared with the well-known Min-Min, Max-Min, Cloud Min-Min Scheduling (CMMS), Cloud MAX-Min Scheduling (CMAXMS) and Cloud Normalized Min-Min Max-Min (CNXM) algorithms as per their applicability. The experimental results on the benchmark dataset clearly show the efficacy of the proposed algorithm over the existing algorithms in terms of makespan and average grid/cloud utilization.

Keywords : Average Cloud Utilization, Cloud Computing, Grid Computing, K-means Algorithm, Makespan, Multi-cloud.

1. INTRODUCTION

Cloud computing is a new and proficient technique in the field of Information and Communications Technology (ICT). It is an extension of parallel, distributed and grid computing. The services in the cloud can be delivered to the customer in the form of three services, namely infrastructure as a service (IaaS), platform as a service (PaaS) and software as a service (SaaS). These services are available to users in a pay-per-use basis [1]. Therefore, cloud computing has drawn intensive interest in various fields such as healthcare, agriculture and smart grid [2]. This technology is provided by the following cloud service providers (CSPs): Microsoft Azure [3], Amazon Elastic Compute Cloud (EC2) [4], Google App Engine (GAE) [5] and IBM Cloud [6] to distribute tasks across the various resources hosted by the datacenters. The task assignment to the grid or cloud resources are a well-known NP-Complete problem as it aims to minimize the overall execution time (i.e., makespan) [7-10]. Hence, several efforts have been made to find a near optimal solution. However, the problem in multi-cloud heterogeneous environment is very challenging and not well covered in the current research [2].

In this paper, we address the problem for heterogeneous grids or clouds and propose a new task scheduling algorithm, called Grid (or Cloud) K-means Min-Min Scheduling (GKMS (or CKMS)) algorithm. This algorithm comprises of two phases, namely clustering and
K-means Min-Min Scheduling Algorithm for Heterogeneous Grids or Clouds

7. CONCLUSIONS

Scheduling in heterogeneous computing environments is a well-known NP-complete problem. We have presented a task scheduling algorithm for heterogeneous grid and cloud system. The proposed algorithm uses traditional K-means clustering technique to minimize the makespan and maximize the resource utilization. It was tested and compared with existing algorithms using 512 × 12 benchmark dataset. The comparison is based on task heterogeneity, machine or cloud heterogeneity and type of consistency (i.e., consistent, inconsistent and semi-consistent). The comparison result clearly shows the efficacy of the proposed algorithm in terms of makespan and resource utilization. The future work will be the implementation of the proposed algorithm in real cloud environment and cost analysis of the proposed algorithm.

REFERENCES
17. S K Panda, S Nag and P K Jana. A Smooth-
K-means Min-Min Scheduling Algorithm for Heterogeneous Grids or Clouds

Roshni Pradhan is currently pursuing MTech. degree in Information Technology at Veer Surendra Sai University of Technology (VSSUT), Bhubaneswar, Odisha, India. Her research interests include Cloud Computing, Grid Computing and Fairness based Scheduling.

Sanjaya Kumar Panda is currently an Assistant Professor at VSSUT, Burla, Odisha and he is pursuing Ph.D at Indian School of Mines (ISM), Dhanbad, India. He received two Silver Medal Award for Best Graduate and Best Post-Graduate in Computer Science and Engineering, Young Scientist Award in Engineering/Computer, best paper presenter award from CSI and Distinguished Speaker Award from CSI. He has published more than 35 papers in journals and conferences. He is the editorial board member of American Journal of Computer Science and Information Engineering, USA, International Journal of Sensors and Sensor Networks, USA and International Journal of Wireless Communications and Mobile Computing, USA. He acted as reviewers in many reputed journals including IEEE Transaction on Systems, Man and Cybernetics, Applied Soft Computing, Elsevier, Mathematical Problems in Engineering etc. and conferences including INDICON, ICACCI, PDGC, INDIACom, IISPIT, MobiApps, PECON, WSCAR, ISGT, TCGC, WCI, SPICES and ISBEIA etc. He is a member of IEEE, Invited Member of IEEE Communications Society, CSI, IAENG, ISTE, IACSIT, UACEE, ACEEE and SDIWC. His current research interests include Cloud Scheduling, Grid Scheduling and Fault-Tolerance in Distributed System.

Sujaya Kumar Sathua is currently an Assistant Professor at VSSUT, Burla, Odisha and he is pursuing Ph.D at Sambalpur University, Burla, India. He has published more than 5 papers in reputed journals and conferences. His current research interests include Cloud Scheduling, Image Restoration and Computer Algorithms.