Assessing the Fault Proneness Degree (DFP) of Change Request Artifacts by Estimating the Impact of Change Request Artifacts Correlation

Rudra Kumar M\textsuperscript{a}, A Ananda Rao\textsuperscript{b}

\textsuperscript{a}Department of Computer Science and Engineering, Annamacharya Institute of Technology and Sciences, Rajampet, Andhra Pradesh, India, Contact: rk.madapuri@yahoo.com

\textsuperscript{b}Professor, Director of IRP, SCDE JNTU Anantapur, Anantapur, India.

Exploring the impact of change requests applied on a software maintenance project helps to assess the fault-proneness of the change request to be handled further, which is perhaps a bug fix or even a new feature demand. In practice, the major development community stores change requests and related data using bug tracking systems such as bugzilla. These data, together with the data stored in a versioning system, such as Concurrent Versioning Systems, are a valuable source of information to create descriptions and also can perform useful analyses. In our earlier work, we proposed a novel statistical bipartite weighted graph-based approach to assess the degree of fault proneness of the change request and Change Request artifacts. We motivated by this model, we propose a novel strategy that estimates the degree of fault proneness of a change request by assessing the impact of a change request artifact towards fault proneness that considers the correlation between change requests artifact as another factor, which is in addition to our earlier strategy. The proposed model can be titled as Assessing the Fault Proneness Degree of Change Request Artifacts by estimating the impact of Change Requests Correlation (DFP-CRC). In our earlier model, the method DFP-CRC also makes use of information retrieval methods to identify the change request artifacts of the devised change request. Further, evaluates the degree of fault proneness of the Change Requests by estimating the correlation between change requests. The proposed method is evaluated by applying on concurrent versioning and Change request logs of the production level maintenance project.

**Keywords:** Artifacts, Change Request, Concurrent Versioning System, Defect Forecasting, Fault Proneness, Product Metrics, Risk Prediction, SDLC.

1. **INTRODUCTION**

The present project development scenarios are letting to access the version histories due to the usage of tools such as concurrent versioning systems (CVS) \cite{1}. These version histories are volume wise very high. This version history helps to extract the information regarding the progress of stages and strategies of that project development scenario, also provides information of the time and resource related to a change acquired. In recent literature related to software engineering and development, we can observe the extended role of this version history. Few of such developments are, using to access the change proliferation \cite{2}; examining the impact of the bugs \cite{3}, accessing complexities of software \cite{4}, and also can use to access the reusability\cite{5}\cite{6}.

The said issues \cite{2}\cite{3}\cite{4}\cite{5}\cite{6} issues usually raised due to analyzing the outcome of the development instead of process of the development. In related to this, the research work devised in \cite{3} concluded that fault proneness is proportional to the count of code changes applied. The research article \cite{2} devised a strategy that extracts patterns from changes registered in version history and the same used to recognize the tuples of code need to be modified in related to a modification required. In this regard in our earlier effort we defined chain


**Ananda Rao Akepogu** received B.Sc. (M.P.C) Degree from Silver Jubilee Government College, SV University, Andhra Pradesh, India. He received BTech. degree in Computer Science and Engineering and M.Tech degree in AI & Robotics from University of Hyderabad, Andhra Pradesh, India. He received Ph.D from Indian Institute of Technology, Madras, India. He is Professor of Computer Science and Engineering and Director of IR & P, SCDE of JNTU, Anantapur, India. Ananda Rao published more than fifty research papers in international journals, conferences and authored three books. His main research interest includes software engineering and data mining.

**Rudra Kumar M** is pursuing Ph.D in Computer Science & Engineering from JNTUA, Anantapur, Andhra Pradesh. He received his M.Tech in Computer Science and Engineering from the same university. He received BTech degree in Computer Science and Engineering from Sri Venkateswara University, India. He is associate professor of computer science and Engineering, AITS, JNTUA, Anantapur. He is a member of IEEE.