Framework to Assess the Effectiveness of Software Fault Classification

Yeresime Suresh, Lov Kumar, Santanu Kumar Rath

Department of Computer Science and Engineering, National Institute of Technology, Rourkela - 769008, Contact: suresh.vec04@gmail.com, lovkumar505@gmail.com, skrath@nitrkl.ac.in

Software fault prediction is helpful in deciding the amount of effort needed for software development. In literature it is observed that, many models have been studied and evaluated on software products to determine best suitable model for fault prediction based on certain performance criteria. However very less significant work has been done on feasibility of fault prediction model. In this article, a cost evaluation framework has been proposed which performs cost based analysis for mis-classification of faults. Appropriately, this work focuses on inspecting the usability of fault prediction. This paper highlights on classification of faults on the basis of Radial Basis Function Network (RBFN) and its application on Apache Integration Framework (AIF) version 1.6. Fault prediction is found to be useful where normalized estimated fault removal cost (NEcost) was less than certain threshold value. Gradient RBFN model obtained promising results in terms of cost analysis when compared with those of basic RBFN and hybrid RBFN models.

Keywords: Apache Integration Framework, CK Metric Suite, Cost, Fault, Neural Network, Radial Basis Function.

1. INTRODUCTION

Fault prediction is necessary in software development life cycle and is carried out to identify fault-prone modules. Fault prediction not only gives an insight to the need for increased quality of monitoring during software development but also provides necessary tips to undertake suitable verification and validation approaches that eventually lead to improvement of in terms of efficiency and effectiveness of fault prediction. Effectiveness of a fault-prediction is studied by applying a part of previously known data related to faults and predicting its performance against other part of the fault data.

Several researchers have worked on building prediction models for software fault prediction but less emphasis has been given on the study of effectiveness of fault prediction. This paper aims to assess the influence of RBFN model in predicting faults by using CK metrics as requisite input to the prediction models to put the results of a fault-prediction technique in proper perspective. Also an attempt has been made to assess the influence of fault removal cost in predicting whether performing fault prediction analysis is useful or not. Radial Basis Function Network (RBFN) is applied as a classifier to classify faulty, not-faulty classes and predict the fault detection accuracy rate respectively.

The rest of the paper is organized as follows: Section 2, summarizes on software metrics and their usage in fault classification. Section 3, highlights on research background. Section 4 describes the proposed work for fault classification by applying RBFN and also presents a framework for emphasizing the effectiveness of fault classification based on cost parameter. Section 5 highlights on the parameters used for evaluating the performance of each of the applied RBFN model. Section 6 presents the results and analysis about fault classification. Section 7 concludes the paper with scope for future work.
fault classification analysis. Here normalized data set of CK metrics suite was used as requisite input to the prediction models.

Table 12 shows that gradient model of RBFN obtained better fault classification when compared with the other two RBFN models. In terms of cost evaluation, it can be concluded that Gradient RBFN has low value of NEcost when compared with that of Basic RBFN and Hybrid RBFN. So from the proposed work of cost evaluation framework, it can be noted that it is better to perform fault prediction when NEcost is less than one.

In future, work should be replicated to other open source projects like Mozilla using different AI techniques to analyze the model used in achieving higher accuracy of fault prediction is effective or not.

REFERENCES


Yeresime Suresh was born in Bellary, India, on February 20, 1985. He received his MTech Degree in Software Engineering from Sri Jayachamarajendra College of Engineering, Mysore, India in 2010. He is presently working towards the Ph.D Degree in Computer Science at National Institute of Technology, Rourkela, India. His areas of interest include Software Metrics, Software Fault Prediction, Object-Oriented Testing.

Lov Kumar did his BTech in Computer Science and Engineering from C V Raman College of Engineering, Bhubaneswar. Currently he is pursuing his MTech in Computer Science and Engineering with Software Engineering specialization at NIT, Rourkela. His areas of interest are in Software Quality Estimation using Software Metrics.

Dr. Santanu Kumar Rath received his Ph.D Degree from Indian Institute of Technology, Kharagpur, India. He is currently a Professor in Department of Computer Science and Engineering, NIT, Rourkela, India since 1988. He has authored and co-authored many research papers. His research interests are Software Engineering, Bioinformatics, System Engineering and Management. Dr. Santanu Kumar Rath is a Senior Member of the IEEE, USA and ACM, USA and Petri Net Society, Germany and is a professional member of MIEEE, MACM, FIE and FCSI.