EEHCR: Energy Efficient Hierarchical Cluster Routing in Wireless Sensor Networks

B M Thippeswamy a, Reshma S b, Shaila K b, Tejaswi V c, Venugopal K R b, S S Iyengar d, L M Patnaik e

aDepartment of Computer Science and Engineering, Jawaharlal Nehru Technological University, Ananthapur.
bDepartment of Computer Science and Engineering, University Visvesvaraya College of Engineering, Bangalore University, Bangalore 560 001.
cDepartment of Computer Science and Engineering, National Institute of Technology, Karnataka, Surathkal, Mangalore, India.
dRyder Professor, Florida International University, USA.
eHonorary Professor, Indian Institute of Science, Bangalore, India.

Energy management is one of the critical parameters in Wireless Sensor Networks. In this paper we attempt for a solution to balance the energy usage for maximizing the network lifetime, increase the packet delivery ratio and throughput. Our proposed algorithm is based on Energy Density of the clusters in Wireless Sensor Networks. The cluster head is selected using two step method and on-demand routing approach to calculate the balanced energy shortest path from source to sink. This unique approach maintains the balanced energy utilization among all nodes by selecting the different cluster heads dynamically. Our simulation results show the improvements in delay, energy utilization, network lifetime and throughput than earlier works.


1. INTRODUCTION

Wireless Sensor Networks (WSNs) are used in numerous applications like Traffic management, Battle field surveillance, Environmental monitoring, Health care systems, Underwater applications and etc., [1][2][3].

Energy utilization is one of the significant parameter for battery powered wireless sensor networks. It is essential to reduce energy consumption in all the sensor nodes to increase the network lifetime [4]. In WSNs, the nodes surrounding the sink have tendency to drain their energy soon compared to the nodes away from the sink and such irregular energy drain will decrease the network lifetime [5]. Unbalanced energy utilization can cause network partition even though many of the nodes may have maximum residual energy which are away from the sink [6]. Thus, it is necessary that every node should consume energy evenly in order to increase the lifetime of the network.

Energy efficiency and balanced energy utilization are two different aspects. Shortest path routing uses energy efficiently but may not result in balanced energy utilization. Topology, Applications and Routing protocols are main causes for unbalanced energy utilization. However, eventually a number of solutions are proposed by many of the routing protocols such as: Optimal Deployment of sensor nodes relative to applications [7][8], Organization of dynamic Topology of nodes based on transmission power requirements [9][10], the deployment of Mobile sinks or Relay nodes [11][12] and efficient data aggregation techniques to manage uniform en-
Lifetime increases by 18% over the other two protocols (Table 4).

The throughput of the network in EEHCR is shown in Figures 5 and 6. Uniform energy utilization coupled with high packet delivery ratio and low packet drop in EEHCR has resulted in higher throughput than TSCHS and EBRP. There is an increase in throughput of 38% in our protocol and the throughput profile is shown in Table 5.

Figure 5. The Number of Packets Dropped in the Three Algorithms EEHCR, TSCHS and EBRP.

Figure 6. Comparison of Network Throughput in the Three Algorithms EEHCR, TSCHS and EBRP.

7. CONCLUSIONS

Balanced Energy utilization is one of the important parameters in increasing the lifetime of the WSNs. Cluster head selection and on-demand routing are two critical issues. The proposed algorithm EEHCR shows that the cluster head selection based on the energy density and the residual energy is more efficient and effective than other parameters. We have followed a unique energy density calculation, based on the parameters such as average residual energy of neighbor nodes and itself, distance from local cluster head and coverage area of each node. Such a method of cluster head selection supports balanced energy utilization and increase in throughput of the network. The shortest path calculation is based on On-Demand approach which considers depth parameter from source to sink. The cumulative efficiency of the Two steps cluster head selection coupled with shortest path On-Demand routing has increased the network lifetime. It is clearly observed that our algorithm performs better than earlier algorithms with respect to uniform utilization of energy, lifetime and throughout. This work can be extended to mobile sinks to reduce latency and further increase the lifetime of the network.

REFERENCES

Table 4
Network Lifetime

<table>
<thead>
<tr>
<th>Simulation Time (mSecs)</th>
<th>Network Lifetime</th>
<th>Packet Delivery Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EEHCR</td>
<td>TSCHS</td>
</tr>
<tr>
<td>2000</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>4000</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>6000</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td>8000</td>
<td>0.97</td>
<td>0.94</td>
</tr>
<tr>
<td>10000</td>
<td>0.93</td>
<td>0.86</td>
</tr>
<tr>
<td>12000</td>
<td>0.88</td>
<td>0.82</td>
</tr>
<tr>
<td>14000</td>
<td>0.82</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Table 5
Network Throughput

<table>
<thead>
<tr>
<th>Simulation Time (mSecs)</th>
<th>Packet Drop</th>
<th>Network Throughput</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EEHCR</td>
<td>TSCHS</td>
</tr>
<tr>
<td>0.78</td>
<td>0.13</td>
<td>0.18</td>
</tr>
<tr>
<td>0.80</td>
<td>0.15</td>
<td>0.20</td>
</tr>
<tr>
<td>0.81</td>
<td>0.2</td>
<td>0.25</td>
</tr>
<tr>
<td>0.84</td>
<td>0.25</td>
<td>0.33</td>
</tr>
<tr>
<td>0.86</td>
<td>0.3</td>
<td>0.42</td>
</tr>
<tr>
<td>0.88</td>
<td>0.32</td>
<td>0.44</td>
</tr>
<tr>
<td>0.9</td>
<td>0.34</td>
<td>0.46</td>
</tr>
</tbody>
</table>


35. Zhong-Gao Sun, Zheng, Z W and Shao-Juan


B M Tippleswamy is an Assistant Professor and Head in the Department of Computer Science and Engineering at Sambhram Institute of Technology, Bangalore, India. He obtained his B.E in Computer Science and Engineering from Mysore University and M.E Degrees in Computer Science and Engineering from Bangalore University, Bangalore. He is presently pursing his Ph.D programme in the area of Wireless Sensor Networks in JNTU Ananthapur, India. His research interest is in the area of Wireless Sensor Networks.

Reshma S is a Lecturer in the Department of Computer Science and Engineering at Sambhram Institute of Technology, Bangalore, India. She received her Bachelor’s degree in Computer Science and Engineering from Visvesvaraya Technological University and Master of Technology from Visvesvaraya Technological University, Regional Center, Bangalore. Her research interest is in the area of Wireless Sensor Networks.

Shaila K is an Professor and Head in the Department of Electronics and Communication Engineering at Vivekananda Institute of Technology, Bangalore, India. She obtained her B.E in Electronics and M.E degrees in Electronics and Communication Engineering and Ph.D degree from Bangalore University, Bangalore. Her research interest is in the area of Sensor Networks, Adhoc Networks and Image Processing.

Tejaswi V is a M.Tech student in the Department of Computer Science and Engineering, National Institute of Technology, Surathkal. She completed her B.Tech in Computer Science and Engineering from R V College of Engineering, Bangalore. Her research interest is in the area of Wireless Sensor Networks.

Venugopal K R is currently the Principal, University Visvesvaraya College of Engineering, Bangalore University, Bangalore. He obtained his Bachelor of Engineering from University Visvesvaraya College of Engineering. He received his Masters degree in Computer Science and Automation from Indian Institute of Science Bangalore. He was awarded Ph.D in Economics from Bangalore University and Ph.D in Computer Science from Indian Institute of Technology, Madras.
He has a distinguished academic career and has degrees in Electronics, Economics, Law, Business Finance, Public Relations, Communications, Industrial Relations, Computer Science and Journalism. He has authored and edited 39 books on Computer Science and Economics, which include Petrodollar and the World Economy, C Aptitude, Mastering C, Microprocessor Programming, Mastering C++ and Digital Circuits and Systems etc. During his three decades of service at UVCE he has over 400 research papers to his credit. His research interests include Computer Networks, Wireless Sensor Networks, Parallel and Distributed Systems, Digital Signal Processing and Data Mining.

S S Iyengar is currently Ryder Professor, Florida International University, USA. He was Roy Paul Daniels Professor and Chairman of the Computer Science Department at Louisiana State University. He heads the Wireless Sensor Networks Laboratory and the Robotics Research Laboratory at LSU. He has been involved with research in High Performance Algorithms, Data Structures, Sensor Fusion and Intelligent Systems, since receiving his Ph.D degree in 1974 from MSU, USA. He is Fellow of IEEE and ACM. He has directed over 40 Ph.D students and 100 Post Graduate students, many of whom are faculty at Major Universities worldwide or Scientists or Engineers at National Labs/Industries around the world. He has published more than 500 research papers and has authored/co-authored 6 books and edited 7 books. His books are published by John Wiley and Sons, CRC Press, Prentice Hall, Springer Verlag, IEEE Computer Society Press etc.. One of his books titled Introduction to Parallel Algorithms has been translated to Chinese.

L M Patnaik is currently Honorary Professor, Indian Institute of Science, Bangalore, India. He was a Vice Chancellor, Defense Institute of Advanced Technology, Pune, India and was a Professor since 1986 with the Department of Computer Science and Automation, Indian Institute of Science, Bangalore. During the past 35 years of his service at the Institute he has over 700 research publications in refereed International Journals and refereed International Conference Proceedings. He is a Fellow of all the four leading Science and Engineering Academies in India; Fellow of the IEEE and the Academy of Science for the Developing World. He has received twenty national and international awards; notable among them is the IEEE Technical Achievement Award for his significant contributions to High Performance Computing and Soft Computing. His areas of research interest have been Parallel and Distributed Computing, Mobile Computing, CAD for VLSI circuits, Soft Computing and Computational Neuroscience.