Use Case Point Approach Based Software Effort Estimation using Various Support Vector Regression Kernel Methods

Shashank Mouli Satapathy\textsuperscript{a}, Santanu Kumar Rath\textsuperscript{a}

\textsuperscript{a}Department of Computer Science and Engineering, National Institute of Technology Rourkela, Rourkela 769008 India, Contact: shashankamouli@gmail.com, skrath@nitrkl.ac.in.

The job of software effort estimation is a critical one in the early stages of the software development life cycle when the details of requirements are usually not clearly identified. Various optimization techniques help in improving the accuracy of effort estimation. The Support Vector Regression (SVR) is one of several different soft-computing techniques that help in getting optimal estimated values. The idea of SVR is based upon the computation of a linear regression function in a high dimensional feature space where the input data are mapped via a nonlinear function. Further, the SVR kernel methods can be applied in transforming the input data and then based on these transformations, an optimal boundary between the possible outputs can be obtained. The main objective of the research work carried out in this paper is to estimate the software effort using use case point approach. The use case point approach relies on the use case diagram to estimate the size and effort of software projects. Then, an attempt has been made to optimize the results obtained from use case point analysis using various SVR kernel methods to achieve better prediction accuracy.

**Keywords**: Object Oriented Analysis and Design, Software Effort Estimation, Support Vector Regression, Use Case Point Approach.

1. **INTRODUCTION**

Proper software effort estimation is the foremost activity adopted in every software development life cycle. Several features offered by OO programming concept such as Encapsulation, Inheritance, Polymorphism, Abstraction, Cohesion and Coupling play an important role to manage the development process [1,2]. Currently used software development effort estimation models such as, COCOMO and Function Point Analysis (FPA), do not consistently provide accurate project cost and effort estimates [3]. These techniques have been proven unsatisfactory for estimating cost and effort because the lines of code (LOC) and function point (FP) are both used for procedural oriented paradigm [4]. Both of them have certain limitations. The LOC is dependent on the programming language and the FPA is based on human decisions. Hence effort estimation during early stage of software development life cycle plays a vital role for determining whether a project is feasible in terms of a cost-benefit analysis [5,6].

The Use Case Point (UCP) model relies on the use case diagram to estimate the effort of a given software product. UCP helps in providing more accurate effort estimation from design phase of software development life cycle. UCP is measured by counting the number of use cases and the number of actors, each multiplied by its complexity factors. Use cases and actors are classified into three categories. These include simple, average and complex. The determination of the complexity value (simple, average or complex) of use cases is determined by the number of transactions per use case. The UCP model has widely been used in the last decade [7], yet it has several limitations. One of the limitations is that the software effort equation is not well accepted by software estimators because it assumes that the relationship between software effort and size is linear. In this paper, various kernel methods based support vector regression is introduced to tackle the limitations of the UCP model and to en-
ods. At the end of the study, a comparative analysis of the generated results has been presented in order to assess their accuracy.

While comparing the results with the results provided in the related work section, it can be concluded that the results obtained from proposed models outperform the results generated by models given in related work section. Similarly, while comparing the results obtained using various SVR kernel methods, it can be concluded that for UCP, RBF kernel based support vector regression technique outperformed other three kernel methods. The computations for above procedure have been implemented and membership functions generated using MATLAB. This can be further analyzed and proved if real data for Use Point Approach is available. This approach can also be extended by using some other soft computing techniques such as Particle Swarm Optimization (PSO) and Genetic Algorithm (GA).

REFERENCES


S M Satapathy did his MCA from Silicon Institute of Technology and M.Tech in Computer Science and Engineering from KIIT University, Bhubaneswar, India. Currently he is pursuing his Ph.D in Computer Science and Engineering at National Institute of Technology, Rourkela, India. His areas of interest are Software Cost Estimation, Program Slicing.

S K Rath is a Professor in the Department of Computer Science and Engineering, NIT Rourkela since 1988. His research interests are in Software Engineering, System Engineering, Bioinformatics and Management. He has published a large number of papers in international journals and conferences in these areas. He is a Senior Member of the IEEE, USA and ACM, USA and Petri Net Society, Germany.