Wavelet Transform Based Approach for Partial Image Encryption

Parameshachari B Da, K M Sunjiv Soyjaudahb, Sumithra Devi K Ac Panduranga H Td

aDepartment of ECE, Nehru College of Engineering and Research Centre, Pampady, Thiruvilawamala, Kerala, India (Research Scholar, Department of ECE, Jain University, Bangalore.), Contact: parameshbkit@gmail.com

bProfessor, Department of EEE, University of Mauritius, Reduit, Mauritius.

cProfessor, Department of MCA, RVCE, Bangalore, Karnataka, India.

dDepartment of Electronics, Hemogangothri PG center, University of Mysore, Hassan, Karnataka, India.

Advances in digital content transmission have increased in the past few years. Security and privacy issues of the transmitted data have become an important concern in multimedia technology. In this paper proposed partial image encryption algorithm consists of two stages: first stage is \textit{c} scan (continuous raster scan) and second is Band permutation stage. The \textit{c} scan is done by both column wise and row wise. Band permutation means to permute the coefficients in the frequency bands. The coefficients positions are permuted in each frequency band or subblock. The transformed image is composed of seven frequency bands, that is, LL_1, LH_1, HL_1, HH_1, LH_0, HL_0 and HH_0. The scan mapping and Band permutation are often inserted between quantization and entropy coding. Performance of the proposed technique is evaluated by differential Analysis and also quantifying Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR). The experimental results show that the proposed encryption technique is efficient and has high security features.

Keywords: Band Permutation, \textit{C} Scan, Differential Analysis, Partial Encryption.

1. INTRODUCTION

The use of image communication has increased dramatically in recent years. The World Wide Web and video conferencing are two examples. When there is a need to protect the transmission from eavesdroppers, the transmitted data must be encrypted [1]. Unfortunately, the processing time for encryption and decryption is a major factor in real-time image communication. Encryption and decryption algorithms are too slow to handle the tremendous amount of data transmitted. Ciphering of images is actually an important issue. One essential difference between text data and image data is that the size of image data is much larger than the text data. The time is a very important factor for the image encryption. We find it at two levels, one is the time to encrypt, and the other is the time to transfer images. To minimize the time, the first step is to choose a robust, rapid and easy method to implement cryptosystem [2]. Wavelet Transform is one of the most powerful tools in digital signal processing. The image components are decomposed into different decomposition levels using a wavelet transform. These decomposition levels contain a number of subbands, which consist of coefficients that describe the horizontal and vertical spatial frequency characteristics of the original image component [3]. Power of 2 decompositions are allowed in the form of standard decomposition.

To perform the forward DWT, the standard uses a 2-D subband decomposition of a 2-D set of samples into low-pass samples and high-pass samples. Low-pass samples represent a downsampled low-resolution version of the original set. High-pass samples represent a downsam-
Wavelet Transform Based Approach for Partial Image Encryption

Figure 5. Partially Encrypted Images: (a) Original Image (b) C Scan (Row wise) (c) C Scan (Column wise) (d) Band Permutation (First 4 Bands) (e) Band Permutation (First 7 Bands) (f) Band Permutation (First 10 Bands)

(PSNR) for the proposed technique has been computed for different images. It is known that, as the MSE increases, PSNR decreases, resulting more randomness in the encrypted image. MSE is calculated using the formula:

\[MSE = \frac{1}{MN} \sum_{i=1}^{N} \sum_{j=1}^{M} [C(i,j) - C'(i,j)]^2 \]

(6)

where \(C(i,j) \) and \(C'(i,j) \) be the ith row and jth column pixel of two images \(C \) and \(C' \), respectively. \(M \) and \(N \) are number of rows and columns of original image. PSNR can be computed by

\[PSNR = 10 \times \log_{10} \left[\frac{R^2}{MSE} \right] \]

(7)

Where \(R \) is 255 as 8 bit image has been used in this experiment. Calculated results of MSE and PSNR are tabulated in Table 2.

7. CONCLUSION AND FUTURE WORK

In this paper, scrambling analysis of image scrambling encryption algorithm is presented. The performance of the proposed approach is evaluated based on the Differential Analysis, MSE, and PSNR. From the experiment results and the differential analysis can be concluded that the proposed algorithm is secure from various attacks which aim to find the secret keys or pixels in plain images. As MSE increases PSNR decreases, resulting more randomness in the encrypted image. Increases in the value of NPCR and UACI shows that there is an improvement in the amount of encryption. The proposed method proves to be highly secure and decreases the probability of detection of the secret data present in the cover image. As a future work, many other scanning methods can be analyzed. Also, in the same image, a composite scanning path can be introduced by incorporating different scanning paths in different areas of the image.

REFERENCES

1. Cheng H. Partial Encryption for Image and

Parameshachari B D working as a Associate Professor and Department Coordinator in the Department of Electronics and Communication Engineering at Nehru College of Engineering and Research Centre, Pampady, Thiruvilawamala, Kerala, India, affiliated to University of Calicut. Worked as a Senior Lecturer and incharge HOD in the Department of Electronics and Communication Engineering at JSS Academy of Technical Education, Mauritius. He worked at JSSATE, Mauritius for Three years and also worked as a Lecturer at Kalpatharu Institute of Technology, Tiptur for Seven years. He obtained his BE in Electronics and Communication Engineering from Kalpatharu Institute of Technology, Tiptur and also work for three years in IT Sector. Also he obtained his MTech in Communication Engineering from JSS Academy of Technical Education, Sowcarpet, Chennai, and also worked as a Lecturer in the Department of Electronics and Communication Engineering at JSS Academy of Technical Education, Sowcarpet, Chennai. He obtained his PhD in Electronics and Communication Engineering from JSS Academy of Technical Education, Sowcarpet, Chennai, and also worked as a Lecturer in the Department of Electronics and Communication Engineering at JSS Academy of Technical Education, Sowcarpet, Chennai. His research interests include Image Processing, Cryptography and Communication. He has published several Research Papers in the field of Electronics and Communication Engineering.
papers in international Journals/conferences. He is a Member of ISTE, IETE, IACSIT, IAEST, IAENG, SDWIC and AIRCC.

Professor K M Sunjiv Soyjaudah received his B.Sc (Hons) degree in Physics from Queen Mary College, University of London in 1982, his M.Sc. Degree in Digital Electronics from Kings College, University of London in 1991 and his Ph. D. degree in Digital Communications from University of Mauritius in 1998. He is presently Professor of Communications Engineering in the Department of Electrical and Electronic Engineering of the University of Mauritius. His current interest includes Source and Channel Coding Modulation, Image Processing, Cryptography, Voice and Video through IP, as well as Mobile Communication. Dr. K M S Soyjaudah is a member of the IEEE, Director in the Multicarrier (Mauritius), Technical expert in the Energy Efficiency Management Office, Mauritius. Registered Ph.D Guide in University of Mauritius, Reduit, Mauritius and Jain University, Bangalore, Karnataka, India.

Dr. Sumithra Devi K A Professor and Director, in Master of Computer Applications at R V College of Engineering, Bangalore, India. She received BE from Malnad College of Engineering, Hassan. She received ME and Ph.D from UVCE, Bangalore and Avinashilingam University for Women, Coimbatore, INDIA respectively. Reviewer for many International Journals / Conferences like WEPAN, WICT, EDAS, IACSIT, ISCAS, JEMS, Published 14 journals and 65 International/ National Conferences. Professional Member in many IEEE, IETE, CSI, ISTE, Member in BoS and BoE, for Visvesvaraiyah Technological University, Belgaum, Karnataka. Registered Ph.D Guide in Visvesvaraiyah Technological University, Belgaum; Jain University, Bangalore; Prist University, Sathyabhama University, Tamilnadu. Authored a chapter CAD algorithm for VLSI design in the book "VLSI Design ", published by In-Tech Publications, ISBN 979-953-307-512-8, 2011 and authored book on Operating System, published by Shroff Publisher India.

Panduranga H T obtained his M.Tech degree in Digital Electronics and Communication System from Visvesvaraya Technological University, Karantaka in the year 2006. Currently pursuing research in Department of studies in Electronics, University of Mysore, Mysore, Karnataka. His current research includes Image Processing and Information Security.