Analysis of Iris Recognition using Normalized and Un-normalized Iris images

S B Kulkarni a, U P Kulkarni b, R S Hegadi c

aDepartment of Computer Science and Engineering, Graphic Era University, Dehradun, Uttarakhanda 248002 India, Contact: sbkulkarni_in@yahoo.com
bProfessor, SDM College of Engineering and Technology, Dharwad, India.
cAssociate Professor, Solapur University, Solapur, India.

Biometric authentication has become increasingly popular in security system. Here an iris recognition is analyzed based on normalized iris image and un-normalized iris image such that the preprocessing step is reduced and the accuracy is increased. In this iris features are extracted by using Gray Level Co-Occurrence Matrix (GLCM) and Gray Level Run Length Matrix (GLRLM) from the normalized iris region and also un-normalized iris region. Support vector machine is used for classification. Results of False Rejection Ratio (FRR) and Accuracy of both the methods are compared. Experimental results show that the features extracted using un-normalized iris image is having better accuracy as compared to normalized image.

Keywords : GLCM, GLRLM, ROI, SVM.

1. INTRODUCTION

Biometric recognition is the automated recognition of individual based on the physiological and behavioural characteristics. The human iris is an annular part between the pupil and the white sclera. Iris based recognition system can be non-invasive to the users since the iris is an internal organ as well as externally visible, which are of great importance for real-time approach [1]. Iris has the following features such as stability, uniqueness, flexible, reliable. In this paper efficient segmentation and normalization methods are used. The Gray Level Co-occurrence Matrix and Gray Level Run Length Matrix features are extracted from the iris and based on the 1-against-all support vector machine classification is done. The parameter selection of support vector machine plays a very important role to improve the overall performance.

2. RELATED WORK


A T Zaim and M K Quweider [6] in 2006 present a new method for iris texture recognition for the purpose of human identification. Iris features are extracted using Gray Level Co-Occurrence Matrix. The GLCM of each iris is
5. CONCLUSIONS

Experiment is conducted using GLCM and GLRLM. Technique is invariant to iris rotation. Classification accuracy is better in GLCM features with zero degree direction and fusion of both GLCM and GLRLM features in the same direction. Accuracy increases, either by increase in number of samples per class in the training phases or with the fusion of GLCM and GLRLM features. Accuracy of GLCM is 75 %, GLRLM is 57.14 % and fusion of GLCM and GLRLM is 88.89 % is observed with K-fold 5-2 on normalized iris image. Whereas Accuracy of GLCM is 82.35 %, GLRLM is 57.14 % and fusion of GLCM and GLRLM is 94.73 % is observed with K-fold 5-4 on Un-normalized iris image. Hence there is an improvement of 12 % in the accuracy by using unnormalized iris image. It is observed that the FRR is also improved to 25.81 % as compared to normalized iris.

Acknowledgments.
The authors wish to thank CASIA and AICTE. Author wish to thank Dr. R C Joshi, Chancellor, GEU, Dehradun, Uttarakhand, for his valuable guidance. Portions of the research in this paper use the CASIA-IrisV3 collected by the Chinese Academy of Sciences Institute of Automation (CASIA) and a reference to CASIA-IrisV3, http://www.cbisr.ia.ac.cn/IrisDatabase.htm. The work is partially supported by the Research Grant from AICTE, Government of India, Reference No:8023/RID/RPS-114(PVT)/2011-12 Dated December, 24-2011. Author wish to thank Shweta Shirodkar for implementing a part of the work.

REFERENCES

Shrinivas B Kulkarni is Assistant Professor, SDM College of Engineering and Technology, Dharwad, Karnataka, INDIA. He obtained his Bachelor of Engineering from Basaveshwar Engineering College Bagalkot. He received his Masters degree in Computer Science and Engineering from BVBCET, Hubli. He is a research scholar at Graphic Era University, Dehradun, Uttarakhand, India. He has published many papers at International Journal and conferences. He is a member of ISTE. Guided many UG and PG students.

Dr. U P Kulkarni is a Professor, SDM College of Engineering and Technology, Dharwad, India. Dr. Umakant Kulkarni obtained his BE Degree from Karnataka University, Dharwad in the year 1989, ME Degree from PSG College of Technology, Coimbatore in the year 1991 and Ph.D from Shivaji University, Kolhapur in the year 2007. He has published many papers at International Journal and IEEE conferences in the areas of Pervasive and Ubiquitous Computing, Distributed Data Mining, Agents Technology and Autonomic Computing. He is Member of IETE and ISTE. He served as Head of Department and Chief Nodal Officer- TEQIP a World Bank funded project. He has guided many students at PG level and five research scholars are pursuing their Ph.Ds. He can be reached at upkul-karni@yahoo.com

Dr. Ravindra S. Hegadi has completed his graduation in BSc. in 1991, MCA. in 1995, MPhil. in 2004 and Ph.D in 2007 from Gulbarga University, Gulbarga. He has 16 years of teaching and 12 years of research experience. Presently he is serving as Associate Professor at Solapur University, Solapur, India. He has published 27 research articles in reputed International Journals and 43 research articles in National and International Conference proceedings. He has also authored two books. He is member of many international research and academic bodies including IEEE. He has visited Australia, Hong Kong and USA to present his research articles in International Conferences. He is member of editorial and reviewer board of different journal. He has executed UGC sponsored Major research project and organized workshops. His research interests are Digital Image Processing, Pattern Recognition, Medical Image Analysis, Data and Image Mining.