Distributed Painting by a Swarm of Robots with Unlimited Sensing Capabilities and Its Simulation

Deepanwita Dasa, Srabani Mukhopadhyayab

aDepartment of Information Technology, National Institute of Technology, Durgapur 713 209 India, Contact: deepanwitadaptary@gmail.com

bDepartment of Computer Science and Engineering, Birla Institute of Technology, Mesra, Kolkata Campus, Kolkata 700108 India, Contact: smukhopadhyaya@bitmesra.ac.in

This paper presents a distributed painting algorithm for painting a priori known rectangular region by swarm of autonomous mobile robots. We assume that the region is obstacle free and of rectangular in shape. The basic approach is to divide the region into some cells, and to let each robot to paint one of these cells. Assignment of different cells to the robots is done by ranking the robots according to their relative positions. In this algorithm, the robots follow the basic \textit{Wait-Obsrve-Compute-Move} model together with the \textit{Asynchronous} timing model. This paper presents a simulation of the proposed algorithm. The simulation is performed using the Player/Stage Robotic Simulator on Ubuntu 10.04 (Lucid Lynx) platform.

Keywords: Distributed Coverage, Painting, Robot Swarm, Unlimited Visibility.

1. INTRODUCTION

Distributed coverage of any polygonal region has been an important area of research over the past few years. Applications of covering a free space can be found in the areas like automated humanitarian demining, lawn mowing and milling \cite{1}, sweeping \cite{2}, terrain mapping, space explorations, aerial reconnaissance, search and rescue of victims \cite{3} etc. Coverage of a particular region requires the robots to scan or pass over a designated region. When the robots cover or pass all the parts of that region, coverage is said to be complete. High quality coverage guarantees exhaustive coverage with minimum repetitions. Each robot in a swarm, distributedly and simultaneously covering different parts of the area minimizes time and cost of the work while increasing overall performance.

In this paper, one of such coverage problems is addressed. We consider a problem for painting a known rectangular region without any obstacle. The overall painting will be performed by a swarm of autonomous mobile robots. We assume that a set of \(N\) swarm robots are initially deployed within the given rectangular region. The robots can be located at any place within that region. These robots are assigned the responsibility to paint the whole region. Here, the proposed algorithm will be executed by each of the robots, to solve this problem collectively. We assume that the robots will work in a completely distributed environment. Painting a region is same as covering or scanning the region. From now on, the two words \textit{coverage} and \textit{painting} will be used interchangeably.

In this paper, the robots follow a basic model for computation which is known as \textit{wait-observe-compute-move} model \cite{4} or CORDA model \cite{5}. The algorithms based on this basic \textit{wait-observe-compute-move} model consists of a sequence of computational cycles. In every computational cycle, a robot executes the following four steps:

- **Wait**: A robot is initially in a waiting or idle state, but cannot stay indefinitely idle.

- **Observe**: At any point of time a robot observes the positions of all other robots, asyn-
stacles. The size and shape of the area may vary. They may be convex or concave. The area may or may not contain obstacles. Moreover, the shape and size of the obstacles may vary.

- Visibility: The robots could have limited range of visibility. They can view up to a certain distance.
- Model: We have considered direction-only and asynchronous models. Other models related to direction, orientation and timing may be used to solve similar problems.

REFERENCES

17. Ercan U Acar and Howie Choset. Sensor-based Coverage of Unknown Environments: Incremental Construction of Morse Decompositions,
Distributed Coverage by a Set of Swarm Robots

Deepanwita Das received her Bachelor of Engineering from National Institute of Technology, Durgapur in 2004. She has received her masters degree in Information Technology from Jadavpur University, Kolkata in 2006. She is pursuing her Ph.D at the Department of Information Technology, National Institute of Technology, Durgapur, West Bengal. Her research interests include Swarm Robotics, Distributed Algorithms etc..

Srabani Mukhopadhyaya received B.Sc. with Hons. in Mathematics from St. Xaviers College, Kolkata in 1987 and M.Sc. in Applied Mathematics from the University of Calcutta in 1990. She received her Ph.D in Computer Science from Indian Statistical Institute, Kolkata, in 1997. In 1998, she visited University of Florida as a Post Doctoral fellow. During 1999 to 2005 she was attached with Indian Statistical Institute first as a Research Associate and then as the Principal Investigator of a project under the Women Scientists scheme of the Department of Science and Technology, Government of India. Currently, she is an Associate Professor at Birla Institute of Technology, Mesra, Kolkata Campus. Her current research interests include Swarm Intelligence, Graph and Combinatorial Algorithms, Parallel and Distributed Computing, Sensor Networks, etc..