Feature Extraction Computation and Automatic Raga Identification for Carnatic Ragas

Surendra Shettya, K K Acharyb and Sarika Hegdec

aDepartment of Computer Applications, NMAMIT, Nitte, Udupi District, Karnataka, India-574110, hsshetty4u@yahoo.com.

bDepartment of Statistics, Mangalore University, Mangalagangothri, Mangalore, Karnataka, India-574199, kka@mangaloreuniversity.ac.in.

cDepartment of Computer Applications, NMAMIT, Nitte, Udupi District, Karnataka, India-574110, sarika.hegde@yahoo.in.

Sequence of swaras in a raga is one of the key features for determining the raga of the song in CarnaticMusic. This sequence of swaras can be represented as sequence of states in the Hidden Markov Model classifier which is the reason for choosing HMM to design the solution for the raga identification problem. Considering that shruthi of the song is unknown and without this swaras cannot be identified, the states (swaras) in HMM are hidden. We construct a feature viz; jump sequence which is computed using the sequence of pitch. Jump sequence is considered as the observation sequence for the HMM model.

In this paper we illustrate the technique used for raga identification using HMM.

1. INTRODUCTION

Music Information Retrieval (MIR) is a process of searching and indexing an audio clip from a large database collection based on the content of the audio clip. One of the approaches to solve MIR is by High-Level Music Content Description where musical concepts such as melody or harmony are used to describe the content of music. The design of MIR for Indian Music collections would require the intelligence of retrieving the piece of audio sample based on the underlying raga used to compose the musical piece. Also, managing the vast audio collections of classical music will require greater human intervention for classifying the songs into different categories based on the concept of Raga. Raga is the most fundamental concept of Indian classical music both in Hindustani and Carnatic Musical traditions.

We have addressed the two most important issues that are not yet dealt with raga identification problem. The kind of work done in this paper has been initiated in the previous work [1], where clusters have been defined manually which is a tedious job. But in this paper we discuss the methods where clusters are formed automatically by applying the K-means clustering algorithm. The organization of the paper is as follows. We present the previous works that are related to the raga identification problems. In the next section, we present the theoretical concepts of raga along with the techniques that are used for raga identification. We discuss the experimental analysis and results in the next section and conclude at the end with the highlight of the future works.

1.1. Previous Works

In Western music the research has been mainly focused on to the note transcription that is to convert the given musical audio into notational script. But in Indian music, the research works mainly have been done based on the identification of the ragas in the song. In paper
especially for musician and MIR systems. Even though many authors are researching in this field for realizing such a system; the task is proved to be very challenging. We have demonstrated a new way of problem solution in our paper which would help design a raga identification system for a vast number of ragas. But the success of such system highly depend accurate pitch calculation for the audio file. Since accurate pitch values corresponds to the sequence of swaras in the audio. To avoid the complexity of pitch calculation we have conducted the experiments on monophonic audio. In future we have planned to implement the robust polyphonic pitch detection described in the literature and combine it with the clustering approach.

REFERENCES
10. Aggelos Pikrakis, Sergios Theodoridis and Demirits Kamarotos. Classification Musical Patterns Using Variable Duration Hidden

Surendra Shetty is working as Associate Professor in Department of MCA at NMAMIT, Nitte, Udupi, Karnataka, India. He has received MCA and MBA degrees. He is currently perusing Ph. D in the area of Audio Data Mining. His main research interests include Data Mining, Artificial Intelligence, Machine Learning, Applications of Digital Signal Processing, Management Information Systems and Software Testing.

Dr. K K Achary is a Professor of Statistics in the Dept. of Post-graduate Studies and Research in Statistics, at Mangalore University, India. He holds M.Sc. degree in Statistics and Ph.D. in Applied Mathematics from Indian Institute of Science, Bangalore, India. His current research interests include stochastic models, Inventory Theory, Face Recognition Techniques, Audio Data Mining and Automatic Speech Recognition. His research papers have appeared in European Journal of Operation Research, Journal of Operation Research Society, Opsearch, CCERO, International Journal of Information and Management Sciences, Statistical Methods and American Journal of Mathematics and Management.

Sarika Hegde is working as Assistant Professor in Department of MCA at NMAMIT, Nitte, Udupi, Karnataka, India. She holds BE degree in Information Science and M.Tech in Computer Science. She is currently perusing Ph. D in the area of Automatic Speech Recognition. Her main research interests include Data Mining, Artificial Intelligence, Machine Learning, Applications of Digital Signal Processing, Speech Recognition.