Forecasting Stock Time-Series using Data Approximation and Pattern Sequence Similarity

Vishwanath R Ha, Leena Sa, Srikantaiah K Ca, K Shreekrishna Kumarb, P Deepa Shenoya, Venugopal K Ra, S S Iyengarc and L M Patnaikd

aDepartment of Computer Science and Engineering, University Visvesvaraya College of Engineering, Bangalore University, Bangalore. Contact: vishwa.gld@gmail.com

bDirector, All India Council for Technical Education, SWRO, Bangalore, India

cDirector and Ryder Professor, Florida International University, USA

dHonorary Professor, Indian Institute of Science, Bangalore 560 001, India

Time series analysis is the process of building a model using statistical techniques to represent characteristics of time series data. Processing and forecasting huge time series data is a challenging task. This paper presents Approximation and Prediction of Stock Time-series data (APST), which is a two step approach to predict the direction of change of stock price indices. First, performs data approximation by using the technique called Multilevel Segment Mean (MSM). In second phase, prediction is performed for the approximated data using Euclidian distance and Nearest-Neighbour technique. The computational cost of data approximation is $O(n \times n_i)$ and computational cost of prediction task is $O(m \times |NN|)$. Thus, the accuracy and the time required for prediction in the proposed method is comparatively efficient than the existing Label Based Forecasting (LBF) method [1].

Keywords: Data Approximation, Nearest Neighbour, Pattern Sequence, Stock Time-Series.

1. INTRODUCTION

Data mining is the process of extracting knowledge, by dredging the data from huge database. Sequence database consists of sequence of ordered events with or without notion of time. Time series data is a sequence database which consists of sequences of values or events obtained over repeated measurements of time, which can be used in prediction of any future events for user applications. Forecasting is the prediction of forth coming events based on historical events. The recurring intervals for forecasting is based on the duration observed, \textit{i.e.}, it requires many years for long term prediction, a year or more for medium term prediction and weeks or days for short term prediction.

1.1. Motivation

The main motivation behind this work is that, it is very much crucial for the stock market investors to estimate the behavior or trend of the stock market prices as precisely as possible in order to reach the best trading decisions for their investments. On the other hand, the complexity of many financial market is based on the nonlinearity and nonparametric nature of the variables influencing the index movement directions including human psychology and political events. The unpredictable volatile market index makes it a highly challenging task to accurately forecast its path of movement. In this context, it is required to build an efficient forecasting model, so that the investor can utilize the most accurate time series forecasting model to maximize the profit or to minimize the risk.

1.2. Methodologies

In this paper, we are using sliding window model to analyze stock time-series data. The
Table 2
The Prediction Errors by LBF and APST methods on the TAIEX dataset for the financial year 2010

<table>
<thead>
<tr>
<th>Month</th>
<th>MER(LBF)</th>
<th>MER(APST)</th>
<th>MAE(LBF)</th>
<th>MAE(APST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>5.02</td>
<td>4.22</td>
<td>0.53</td>
<td>0.43</td>
</tr>
<tr>
<td>May</td>
<td>8.30</td>
<td>7.22</td>
<td>0.56</td>
<td>0.46</td>
</tr>
<tr>
<td>June</td>
<td>6.89</td>
<td>5.59</td>
<td>0.51</td>
<td>0.41</td>
</tr>
<tr>
<td>July</td>
<td>7.41</td>
<td>6.21</td>
<td>0.47</td>
<td>0.37</td>
</tr>
<tr>
<td>Aug</td>
<td>8.37</td>
<td>7.57</td>
<td>0.47</td>
<td>0.37</td>
</tr>
<tr>
<td>Sep</td>
<td>7.30</td>
<td>6.40</td>
<td>0.45</td>
<td>0.35</td>
</tr>
<tr>
<td>Oct</td>
<td>4.62</td>
<td>3.68</td>
<td>0.47</td>
<td>0.37</td>
</tr>
<tr>
<td>Nov</td>
<td>7.26</td>
<td>6.28</td>
<td>0.44</td>
<td>0.34</td>
</tr>
<tr>
<td>Dec</td>
<td>6.88</td>
<td>5.88</td>
<td>0.43</td>
<td>0.35</td>
</tr>
<tr>
<td>Jan</td>
<td>7.20</td>
<td>8.26</td>
<td>0.44</td>
<td>0.36</td>
</tr>
<tr>
<td>Feb</td>
<td>6.26</td>
<td>4.26</td>
<td>0.44</td>
<td>0.35</td>
</tr>
<tr>
<td>Mar</td>
<td>7.26</td>
<td>5.26</td>
<td>0.44</td>
<td>0.38</td>
</tr>
</tbody>
</table>

average MER is 6.89%, average MAE is 0.47% in the existing LBF method, whereas in the proposed method, the average MER is 5.90% and average MAE is 0.37%. Thus, the proposed method is ≈ 1% more efficient with respect to MER and 0.1 % more efficient for MAE compared to existing LBF method.

Also, the average CPU time required for existing LBF method is 0.61 milliseconds, whereas in the proposed method, it is 0.5 milliseconds. Thus, proposed method is 0.11% more efficient than the existing method. Future enhancement can be focused on selecting the window size dynamically and fine tune the matching sequence.

REFERENCES
2. Xiang Lian, Lei Chen, Jeffrey Xu Yu, Jinsong Han, Jian Ma. Multiscale Representations for
Prediction of Stock Time-Series Data

Vishwanath R Hulipalled is an Assistant Professor in the Department of Computer Science and Engineering at Sambhram Institute of Technology, Bangalore, India. He received his Bachelors degree in Computer Science and Engineering from Karnatka University and Master of Engineering from UVCE, Bangalore University, Bangalore. He is presently pursuing his Ph.D in the area of Data Mining in JNTU Hyderabad. His research interest includes Time Series Mining and Data Analysis.

Leena is pursuing B.E in Department of Computer Science and Engineering, University Visvesvaraya College of Engineering, Bangalore. Her research interest is in the area of Data Mining and Time Series Mining.

Srikantaiah K C is an Associate Professor in the Department of Computer Science and Engineering at S J B Institute of Technology, Bangalore, India. He obtained his B.E and M.E degrees in Computer Science and Engineering from Bangalore University, Bangalore. He is presently pursuing his Ph.D programme in the area of Web Mining in Bangalore University. His research interest is in the area of Data Mining, Web Mining and Semantic Web.

K Shreekrishna Kumar is currently the Director of All India Council for Technical Education, SWRO, Bangalore. He obtained his Master of Science from Bhopal University. He received his Masters degree in Information Technology from Punjab University. He was awarded Ph.D in Physics (Glass Technology) from Ma-
hatma Gandhi University. He was the member of
the Jury Panel, Indian Journal of Pure and Ap-
plied Physics, CSIR (New Delhi). He was the
Collaborative researcher, Nuclear Science Centre,
New Delhi.

P Deepa Shenoy was born in India, on May 9, 1961. She
graduated form UVCE, completed her M.E. from UVCE.,
has done her MS(Systems and information) from BITS.,
Pilani, and has obtained her Ph.D in CSE from Bangalore
University. She is presently employed as a Professor
in department of CSE at UVCE. Her research
interests include Computer Networks, Wireless
Sensor Networks, Parallel and Distributed Sys-
tems, Digital Signal Processing and Data Mining.

Venugopal K R is currently the Principal, University Visves-
varaya College of Engineering, Bangalore University, Banga-
lore. He obtained his Bachelor of Engineering from University
Visvesvaraya College of Engineer-
ing. He received his Masters degree in Computer Science and
Automation from Indian Institute of Science Ban-
galore. He was awarded Ph.D in Economics from
Bangalore University and Ph.D in Computer Science from Indian Institute of Technology, Madras.
He has a distinguished academic career and has
degrees in Electronics, Economics, Law, Business
Finance, Public Relations, Communications, Industrial Relations, Computer Science and Jour-
nalism. He has authored and edited 39 books on Computer Science and Economics, which in-
clude Petrodollar and the World Economy, C Aptitude, Mastering C, Microprocessor Programming, Mastering C++ and Digital Circuits and Systems etc.. During his three decades of service at UVCE he has over 350 research papers to his credit. His research interests include Computer Networks, Wireless Sensor Networks, Parallel and Distributed Systems, Digital Signal Processing and Data Mining.

S S Iyengar is currently the Roy Paul Daniels Professor and
Chairman of the Computer Science Department at Louisiana
State University. He heads the Wireless Sensor Networks Laboratory and the Robotics
Research Laboratory at LSU.
He has been involved with research in High Per-
formance Algorithms, Data Structures, Sensor Fusion and Intelligent Systems, since receiving
his Ph.D degree in 1974 from MSU, USA. He is Fellow of IEEE and ACM. He has directed over 40
Ph.D students and 100 Post Graduate students, many of whom are faculty at Major Universities
worldwide or Scientists or Engineers at National Labs/Industries around the world. He has pub-
lished more than 500 research papers and has authored/co-authored 6 books and edited 7 books.
His books are published by John Wiley & Sons, CRC Press, Prentice Hall, Springer Verlag, IEEE
Computer Society Press etc.. One of his books ti-
tled Introduction to Parallel Algorithms has been translated to Chinese.

L M Patnaik is currently Hon-
orary Professor, Indian Institute
of Science, Bangalore, India.
He was a Vice Chancellor,
Defense Institute of Advanced
Technology, Pune, India and
was a Professor since 1986 with
the Department of Computer
Science and Automation, Indian
Institute of Science, Bangalore. During the past
35 years of his service at the Institute he has over
700 research publications in refereed International Journals and refereed International Conference Proceedings. He is a Fellow of all the four leading Science and Engineering Academies in India; Fellow of the IEEE and the Academy of Science for the Developing World. He has received twenty national and international awards; notable among them is the IEEE Technical Achievement Award for his significant contributions to High Performance Computing and Soft Computing. His areas of research interest have been Parallel and Distributed Computing, Mobile Computing, CAD for VLSI circuits, Soft Computing and Computational Neuroscience.